Efficient Reinforcement Learning in High Dimensional Domains

nur noch 3 lieferbar
  • Produktbeschreibung

    Efficient Reinforcement Learning in High Dimensional Domains

    This book presents development of efficient reinforcement learning methods in a postgraduate research. A reinforcement learning agent tries every state-action pair to find the optimal policy without prior knowledge about the domain. In large domains visiting every state-action pair is not feasible by an agent, therefore standard reinforcement learning approach is not applicable in solving many real world problems. Three new methods are proposed to make the learning efficient according to the characteristics of the problems: Task-Oriented Reinforcement Learning reduces the problem size by viewing it from the task's viewpoint that clarifies task relevant state variables. Symmetrical-Actions Reinforcement Leaning reduces the size of a learning problem by exploiting partial symmetry over action relevant state variables and representing actions values by a single function. Coordinated Multiagent Reinforcement Learning technique uses coordinator-agent hierarchy to keep the size of individual learning problems small. Depending on problem characteristics all or any of these methods can be applied to solve a problem efficiently using reinforcement learning.
  • Zusatzinformation

    LAP Lambert Academic Publishing
    ISBN / EAN
  • Sie könnten auch an folgenden Produkten interessiert sein

    Art.Nr. 1028277

    Reiß:Praxisbuch IT-Dokumentation

    Art.Nr. 1479181

    Ramirez Molina:Diseño de una arquitectu

    Art.Nr. 1459513

    Seibert,J.:Anwend.v.Semantic-Web Techn.

  • 0 Kundenmeinungen

    Schreiben Sie selbst eine Rezension

    Ihre Meinung interessiert uns – und hilft anderen Kunden bei der Auswahl.

    Wenn Sie dieses Eingabefeld sehen sollten, lassen Sie es leer!